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1. Introduction

The pseudo-inverse (or Moore-Penrose generalized inverse) of a matrix

A may be defined as the unique matrix A satisfying the following condi-
tions [due to Penrose (1955)]:

(1.1a) A'aat = At
(1.1b) A'A =2,
1.1¢) @ahf «
(1.1d) @At = afa .

The pseudo-inverse and its generalizations have been extensively investi-
gated and widely applied. One reason for this interest in the pseudo-
inverse is that it permits the succinct expression of some important
geometric constructions in n-dimensional space. This paper will be con-
cerned with the pseudo-inverse and two related geometric constructions:
the orthogonal projection onto a subspace and the linear least squares
problem.

The orthogonal projection onto a subspace X is the unique Hermitian,

idempotent matrix P whose column space [denoted by R(P)] is X. It follows

—
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from (1c) that the matrix

e ¥
A AA

is Hermitian and from (1b) that PA is idempotent and R(PA) = R(A).
Hence P, is the orthogonal projection onto R(A). A similar argument
shows that

P
1.2) Ry A'A

is the projection onto R(AH), the row space of A.
The second construction is the solution of the linear least squares

problem of choosing a vector x to minimize
(1.3) p(x) = Ilb-Axllz ’

where b is a fixed vector and II-II2 denotes the usual Euclidean norm.

The solutions of this problem are given by
1.4) x =A'b + (I-R)z ,

where 2z is arbitrary. When A has full column rank, Ry =1 and the
solution x = A'b s unique. Otherwise, it is easily verified from (1.1)
and (1.2) that A'b is orthogonal to (I-R,)z, so that by the Pythagorean
theorem

I3 = 1ATbIS + 1Rzl

It follows that x = A'b is the unique solution of (1.3) that has minimal

normm.
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The object of this paper is to describe the effects of perturbations
in A on A+, on PA and on A)rb; i.e., on the pseudo-inverse, on the
projection onto R(A), and on the solution of the linear least squares
problem. Such descriptions are important for three reasons. First the
results are useful mathematical tools. Second, in numerical applications
the elements of A will seldom be known exactly, and it is necessary to
have bounds on the effects of the uncertainties in A. Finally many
numerical processes for computing projections and least squares solutions
behave as if exact computations had been performed on a perturbed matrix
A + E, where E is a small matrix whose size depends on the algorithm
and the arithmetic used in its execution.

We shall be concerned with three kinds of results: perturbation
bounds, asymptotic expressions, and derivatives. The perturbation bounds
are needed in the applications mentioned above. Asymptotic expressions
and derivatives are useful computational tools when the perturbation is
actually known. Moreover they can be used to check the sharpness of the
perturbation bounds. Not surprisingly it is rather difficult to obtain
a reasonably sharp perturbation bound that tells the complete story of the
effects of the perturbations. Asymptotic forms and derivatives are easier
to come by.

In order to make this survey reasonably self-contained, we begin in
§2 with a review of the necessary background. In §3 we develop the pertur-
bation theory for the pseudo-inverse, in §4 for the projection P,, and

in §5 for the least squares solution Afb.
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Notes and references. For background on the generalized inverse

see the books by Ben-Israel and Greville (1974), Boullion and Odell (1971),
and Rao and Mitra (1971). The expression (1.1) is due to Penrose (1955,
1956) whose papers initiated the current interest in the pseudo-inverse.
Many articles on perturbation theory for pseudo-inverses and related
problems have appeared in the literature. To date the most complete
survey of the problem has been given by Wedin (1973). In addition to
collecting and unifying earlier material, this paper will present some

new results.

2. Preliminaries

Notation. Throughout this paper we shall use the notational conven-
tions of Householder (1964). Specifically, matrices are denoted by upper
case Latin and Greek letters, vectors by lower case Latin letters, and
scalars by lower case Greek letters. The symbol € denotes the set of
complex numbers, @ the set of complex n-vectors, and €™ the set of

H

complex m x n matrices. The matrix A~ is the conjugate transpose of A.

The column space of A is denoted by R(A), and its orthogonal complement

by R
We shall be concerned with a fixed matrix A € €° 1 with

rank (A) =r .
The matrix E € €" " will denote a perturbation of A and we shall set

B=A+E.
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Since we are concerned with the geometry of " , we shall be at some
pains to cast our results in such a way that they are not affected by uni-
tary transformations (cf. the section on unitarily invariant norms below).
We may use this fact to transform our perturbation problems into a simpler
form. Specifically, let U = (Ul’UZ) €™ be a unitary matrix with
R(U;) = R(A) and let V= (V},V,) be a unitary matrix with R(V;) = R(AY.
Then UHAV has the formm

¢

0 0

(2.1) tHav -

where A € T s nonsingular. We shall partition UHEV and UHBV con-
formally with UHAV:

E E

1 5
UEV = ’
Ey Ep
q By By A B Epp
By By Ex Ez2

These forms will be called reduced forms of the matrices A, B, and E, and

in the sequel we shall often assume that the matrices are in reduced form.

In this case, the pseudo-inverse is given by
-1
All 0.

0 0

(2.2) AT -
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Singular values. It is a well-known result that in the reduced form
(2.1) the matrices U1 and V1 may be chosen so that

Ap=L= diag(ol,cz,...,or) .
where

e G e

1 =% T

This reduced form is called the singular value decomposition of the matrix
A, and the numbers o; are called the singular values of A. From the
relation (2.2) and the fact that AT = Viatu, it follows that

The i-th singular value of a matrix A, which will be denoted by

ai(A), can be written in the form

(2.3) °i(A) = sup inf lIAxllz, e AR R
dim(X)=i xeX
Ixll ;=1
where

2.4) Ivl, = Py

is the usual Euclidean norm. This characterization provides a natural
convention for numbering the singular values of a rectangular matrix:
AeC™has n singular values of which n-r are zero; AH has m

singular values of which m-r are zero. The nonzero singular values of
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A and A are the same.

Two inequalities that we shall need in the sequel follow fairly
directly from (2.3). They are

ci(A) - ol(E) < cri(A) = oi(A) + ol(E)
and
(2.5) oi(AC) < oi(A)ol(C), ol(A)ci(C) ;

Unitarily invariant matrix norms. A normon €0 is a function

I-ll: €™ +R that satisfies the conditions
1. A# 0= Al >0,
(2.6) 2. laAll = |aflAll ,
3. ||A+B|| = J|All + |IB] .
A norm ||+]] is unitarily invariant if
Iavil = Al

for all unitary matrices U and V. The perturbation bounds in this paper

will be cast in terms of unitarily invariant norms, whose properties will now

be described.
Let U and V be the unitary matrices realizing the singular value
decomposition of the matrix A € €~ . Then for any unitarily invariant norm

(.

St s v




Al = 1A, -

Thus IIANm » is a function of the singular values of A, say
’
2.7 llAllm’n - "m,n(°1'°2’ ees0) .

It follows from (2.6) that wm’n regarded as a function on R" isa

norm. Since the interchange of two rows or two colums of a matrix is a
unitary transformation of the matrix, the function m,n is symmetric in
its arguments 01907+ «s0p e It can also be shown that %m,n is nondecreas-

ing in the sense that

(2.9) 0<o. = oi (i=1,2,...,n) =» cpm’n(ol,...,on) < (pm’n(ci,...,cr'l) X

i

We shall say that the norm |l°l|m - is generated by ®nn®
’ ’
An important norm is the spectral norm ||-||2 generated by the function
¢ defined by

9(075055-++50,) = max {Ioll,...,lcnl} :
This mnﬁ can also be defined by the equation
(2.10) Al = sup [lAx]|, ,
lixif =1
where ||*], on the right denotes the Euclidean norm defined by (2.4).

The spectral norm satisfies an important consistency relation with other

unitarily invariant norms. If ||<|| is a unitarily invariant norm generated




=
by ¢, then it follows from (2.5) and (2.9) that
(2.11) Iicoll = ICli, I, (DI,

whenever the product CD is defined. In particular |-]l, is consistent
with itself over matrices and vectors of all dimensions.
A second example of a unitarily invariant norm is the Frobenius norm

generated by the function

2 2

1/2
wF(ol,cz,...,on) = (01+02+...+on) .

For any matrix A € " odinn
m n
2
IIAIIIZ; il ST Iaijl = trace (AHA) .
i=1 j=1

The Frobenius norm satisfies the consistency relation

llcollg = IClighDilg -

Since we shall be dealing with matrices of varying dimensions, we shall

work with a family of unitarily invariant norms defined on U . It is
m,n=1
important that the individual norms so defined interact with one another

properly. Accordingly, we make the following definition.

Definition 2.1. Let |*|l: U C"" LR be a family of unitarily
m,n=1
invariant norms. Then |[*|| is m’liformly generated if there is a symmetric

function ¢, defined for all infinite sequences with only a finite number

of nonzero terms, such that
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IAl = o(0) (A),05(A),...,0 (4),0,0,...)
for all A € €°™, It is normalized if
Ixll = Ixll,
for any vector x.

The function ¢ in the above definition must satisfy the conditions

(2.6). Any norm defined by such a function can be normalized. Indeed we have
”X” - ‘P(ol(x)’oﬁo’-”) - w('lxnzrooonu-) ’

from which it follows that |lx|| = uﬂxuz for some constant u that is inde-
pendent of the dimension of x. The function u'lo then generates the
normalized family of norms.

A uniformly generated family of norms has some nice properties. First,
since the nonzero singular values of a matrix and its conjugate transpose are

the same, we have
1A% = pay .

Second, if a matrix is bordered by zero matrices, its nomm remains unchanged;

i.e.,
O 0 0
(2.12) A = g R 9
g 0 @

In particular if A is in reduced form, then
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Al = 1A, I

and
K o el
AT = TA 70
A third property is that if |/«]| is normalized then
(2.13) IAll, = lIAIl .

In fact from (2.11) and the fact that ||x|| = Hx”z, we have
(2.14) Ax|l, = [lAx]| = llAlllixIl,

for all x. But by (2.10) IIAII2 is the smallest number for which (2.14)

holds, from which (2.13) follows. A trivial corollary of (2.11) and (2.14)

is that [ -]l is consistent:
liColl = (IClfiDf .
Finally we observe that
(2.15) vx fiCxfi, = {IDxll, =>>Cl| = |IDI.

To prove this implication note that by (2.3) the hypothesis implies that
oi(C) < oi(D). Hence the inequality ||C|| =< ||D|| follows from (2.9).
In the sequel ||+|| will always refer to a uniformly generated,

normalized, unitarily invariant norm.
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Perturbation of matrix inverses. We shall later need some results

on the inverses of perturbations of nonsingular matrices. These are

summarized in the following theorem.
Theorem 2.2. Let A be nonsingular and suppose that
1A 0E < 1.

Then A + E is nonsingular,

-1
HasE) 1) < 1AL

Y ’

and

o B

Lewe) Aty ok pE

(2.16) - = =B

A
where
(2.17) < = Al
and

y-1-.<H%’.>o.

In most applications of Theorem 2.2 the number y is insignificantly

different from unity. The number «x is usually called the condition number

of A (with respect to inversion). It measures the sensitivity of the
inverse of A to perturbations in A. Similarly defined quantities will

play similar roles in the perturbation theory for the pseudo-inverse.
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Projections. We have already observed that the orthogonal projections
P, and R, onto the colum space and the row space of A can be expressed

in terms of the pseudo-inverse. The projection onto R(A)J‘ will be denoted

by
4
PAEI-PA.
Likewise
4
RAzI“RA

will denote the projection onto R(A )

When A is in reduced form, its projections can be easily written out:

Ir 0
Py = 8 el
0 0
I 0
T
= xn
Ry % what
0 0
It follows that
Ry = A
and
IPAERyl = Nyl » IP,ERI = [y,

IFRER,l = IEpy [l » IPKERN = [Eqpll -
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These identities enable us to pass from results for the reduced form to

general results stated in terms of projections of A and E.

We shall need some properties of norms of projections later. These

are summarized in the following theorem.

Theorem 2.3. For any A and B the following statements are true.
1. If rank (A) = rank (B), then the singular values of PAP; and
P‘BP;\L are the same so that

L L
Pyl = PGPl -

Moreover the nonzero singular values 02 of PAP; correspond

to pairs #o of eigenvalues of Pp - Py, so that
IPg-Pall, = P35I, = IIPGPHIl, -

SR IIPB-PAII2 < 1, then rank (A) = rank (B).
3. If rank (B) = rank (A), then

PPyl = NEEP, Il -

Proof. Proofs of parts one and two are readily found in the literature.
For part three write PB = P1 + P2 where rank (Pl) = rank (A) and PAPZ =0
(i.e. R(PZ) is orthogonal to R(A)). Then

IPAPRI = PA(1-Py-P))I| = [BA(1-P))I = PPyl

the last equality following from part 1. Now for any x
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4 L
IP,Pyxll < IIPEPyXI

and the result follows from (2.15). o

4
When B = A + E, we can estimate IIPBPAH in terms of E.

Theorem 2.4. The product PBP;\L can be written in the form
4 ot L
(2.18) PpPa = BN RETPY
Hence
(2.19) IPgPAll < IE IEN

and if rank (A) = rank (B), then
(2.20) IPgPxl < min (I, 1413 IEI .
Proof. We have
L 4 +t HBHP.L
PgPy = Pg'PA = (B)BP,
= ")y = "y

- aH "Ry - BhiRe,

which establishes (2.18). The inequality (2.19) follows upon taking norms

in (2.18). Finally (2.20) follows from part 1 of Theorem 2.3. o

Theorems 2.3 and 2.4 have obvious analogues for other combinations of

projectors (e.g. KSRA - -A+ER;). In the sequel a reference to these theorems

will also cover any trivial variants.
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The case when IIPB-PAM2 < 1 will be particularly important later.
We have seen in part 2 of Theorem 2.3 that in this case rank (A) = rank (B).
However more is true: no vector in R(A) can be orthogonal to R(B) and vice
versa. For suppose that x # 0 satisfies PAx = x and PBx = 0. Then
(PB-PA)x = -X, which implies that IIPB-PAII2 > 1. Conversely if IIPB-PAH2 =1
then there is a vector in R(A) or R(B) that is orthogonal to R(B) or
R(A). To see this, note that by Theoramn 2.3.1 there is a vector x
such that (PB-PA)x = x. If PAx = 0 then PBx = X which shows that x € R(B)
and x € R(A)"'. If, on the other hand, PAx # 0, then since PAx = -(I-PB)x
we have Py(Pyx) = 0, which shows that Pyx € R(A) and Pyx ¢ R(B)".

Because of the above considerations, we shall say that R(A) and R(B)
are acute whenever IIPB-PAII 2 < 1. The following theorem gives sufficient

conditions for R(A) and R(B) to be acute.
Theorem 2.5. If rank (A) = rank (B) and
AT IPyERyl, < 1,
then R(A) and R(B) are acute.

Proof. We shall use the reduced form. From Theorem 2.2 it follows

that 1311 - All + E11 nonsingular. Hence

B1
rank = rank (A) = rank (B) .

Exn

It follows that
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B I
R(B) = R = R
-1
[ \E21 EaPn
But
Ir
R(A) = R ;
L 0

from which it is easily seen that no vector in R(A) can be orthogonal to

R(B) and vice versa. o

Theorem 2.4 shows that if rank (A) = rank (B) the spaces R(A) and
R(B) are acute whenever E is sufficiently small. For this reason we shall

say that B is an acute perturbation of A if A and B satisfy the

hypotheses of Theorem 2.4. The reader should remember that the statement
"B is an acute perturbation of A" is stronger than the statement '"R(B) and

R(A) are acute."

Notes and References. The properties of singular values are well known.

See Stewart (1973) for an introduction and Gohberg and Krein (1965) for a
more detailed treatment in an infinite dimensional setting.

Von Neumann (1937) was the first to prove that unitarily invariant
norms can be written as a function of singular values (the function ‘pm,n
in (2.7) is usually called a symmetric gauge function). Systematic treat-
ments of unitarily invariant norms may be found in Mirsky (1960) and Gohberg
and Krein (1965).
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The treatment of unitarily invariant norms in finite dimensional
spaces has often been a little sloppy. In infinite dimensional
settings there is usually only one space and one generating function, and
the same is true in a finite dimensional setting when one is concerned with
square matrices. However, when one considers rectangular matrices with
varying dimensions, different norms can be used for different dimensions,
and there is no reason why these norms should interact nicely. How bad

things can get is illustrated by the family or norms | || defined for
Aecc™ by

m
Al = 3 Al -

This family is unitarily invariant and consistent, but HAHII # |lAll, unless
A 1is square, and the relation (2.15) does not hold in general. Definition
2.1 represents a return to the simplicity of the infinite dimensional case.
Theorem 2.2 is classical and is usually proved by an appeal to the
Neumann series representation (I-A)'1 «T+A+A%+ ... . Wilkinson (1965)
gives a proof that does not use series and discusses at some length the
notion of condition number. The result is usually proved under the assumption
that ||I| = 1; however, the proofs can be extended to establish the result for
any consistent norm.
The results in Theorem 2.3 are well known to people who work closely
with orthogonal projectors (for proofs see Afriat (1957) or Wedin (1969)).
The decomposition in Theorem 2.3 was established in a slightly weaker form

by Wedin (1973). In some cases, when E is small, Rg will be near RA
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and the approximation HPAERBH = HEzﬂlwill be more realistic in (2.19).

The number HPB-PAMZ is closely related to various measures of separa-
tion between subspaces. See Kato (1966) and especially Davis and Kahan
(1970) where further references may be found. Theorem 2.4, with HPAERA”
replaced by ||E||, is proved by Wedin (1973). The term "acute" ordinarily
refers to the angle subtended by two line segments, not to the segments them-
selves, and it is technically misapplied when subspaces are said to the
acute. But this usage will cause no confusion and it is better than the ugly

phrase "in the acute case.'" The term ''acute perturbation' is new.

3. The Pseudo-Inverse

In this section we shall consider the problem of bounding HB*- A*H
in terms of |E||. We shall obtain three basic theorems: one for when
rank (A) # rank (B), one for when rank (A) = rank (B), and one for when
B is an acute perturbation of A. All these theorems are based on expres-
sions for Bf, which also yield asymptotic expressions for B' and expres-

sions for the derivative of A*.

Lower bounds. Before proceeding to obtain bounds on HB*- A*H, we
shall show how bad things can be by deriving lower bounds.

Theorem 3.1. If R(A) and R(B) are not acute, then
(3.1) 18" -1, = 1/)E),

If further rank (B) = rank (A), then




S

(3.2) 18I, = 1/1Ell, -

Proof. Suppose for definiteness that rank (B) > rank (A). Then
there is a vector y € R(B) with [lyll, = 1 such that y € R(A)*. Thus

1=y = Yy = 'y = Yiaersly
- yes'y = BBy, ,

which shows that na*yuz, and hence [B'|l, is not less than 1/|[E|l,. From
this and the fact that Afy = AJrPAy = (0 we have

th; < 18"l = (B"-A")yl, = 1B7-A"). o

Theorem 3.1 shows that the pseudo-inverse of a general matrix is not
a continuous function of its elements, unless the class of perturbations
is restricted. It also says that if two nearby matrices do not have acute
column spaces, then one of them at least must have a large pseudo-inverse.
Moreover if they are of the same rank, then both of them must have large

pseudo- inverses.

A decomposition of BJr - A*. In spite of the negative results in

Theorem 3.1, it is possible to obtain bounds on HBJ"-Afll in the general case,
although these bounds need not remain finite as B approaches A. The

basis for obtaining such bounds is contained in the following theorem.

Theorem 3.2. The following two decompositions of B' - A" are valid:




-21-

+ gt ot B e i e
(3.3) B' - A" = -B'PER AT + BRPY - RERAT

LS t g H, +
(3.4) B - A" = -B'PER AT + &) 'Ry A-RBEHPA(AA) .

Proof. Both expressions can be verified directly by replacing E
with B - A, replacing the projectors by their expressions in terms of

pseudo-inverses, and simplifying. o

It should be noted that (3.3) can be obtained directly from (3.2)

by using Theorem 2.4 to express PBPIL\ and R.éRA in terms of E.

The general theorem. We are now in a position to prove the general

theorem bounding ||B+-A*l|.
Theorem 3.3. For any A and B with B = A + E,
+ 2
18" -A" < u max (146, 187053 NEN ,

where p is given in the following table:

[l ]arbitrary spectral  Frobenius

15

Proof. The proof is a slight modification of the proof given by Wedin
(1973). We shall give only the proof for the Frobenius norm.

Suppose for definiteness rank (B) = rank (A). Let F1’F2’ and F;
denote the three terms on the right-hand side of (3.3). Then the column

spaces of Fl and Fz are orthogonal to the column space of Fz. Hence
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o2 2 2
(3.5) 1BT-ATlIg = IF*F,li% + IF5]5 .

Now since F, + F, = BY (Pg0ATP +PPY),
Ty
IF,+F,liE = IB'E IppEATR, 12+ PgRAIZ) .
But from Theorems 2.4 and 2.5
o 2 Vo
IEATR 12 + [IPgPEI2

+ e 2
IPGEATE + P3P, 12

IA

IPGEATE + IPREATE

IEAYE < nenZiati2 .
Hence

< iaty.st
(3.6) HFl*FZHF < [lA HZHB HZHEHF .
Also from Theorem 2.5

IFgle = IATIiRAR 1 = AT IR,RE
(3.7)
= AT A ERg 1 < IATIBIEN

and the result follows on combining (3.3), (3.6), and (3.7). Since the

final bound is symmetric in A and B, it also holds when rank (B) > rank (A). o

It should be noted that these bounds do not imply that ile-AJrH is small

when |[|E|| is small, since B+ may grow unboundedly as E approaches zero.
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The case rank (A) = rank (B). When A and B have the same rank,

we can strengthen Theorem 3.3 in two ways. First, we can replace the term
max {IIA+II§,IIB+II§} with the product ”AHZHBHZ' Second we can distinguish
more cases for the constant u. In the following theorem recall that

A € €M withm > n.
Theorem 3.4. If rank (A) = rank (B), then
(3.8) 18™-A"1 = wiAT BT En

where u 1is given in the following table.

Ll

rank Arbitrary Spectral Frobenius
rank (A) < min(m,n) 3 (1+ VB)/2 V2
rank (A) = min(m,n)

m#n V2 1
rank (A) =m =n 1 1 1

The proof of this theorem may be found in Wedin (1973). The bound (3.8)

may be recast in the form

bt
IB'-A") IE|
(3.9) S uK >
(g,  TAT
where
< = AT, -

In this form the result is almost analogous to the bound (2.16) for the

inverse in Theorem 2.2. The bound (3.9) also implies that as E approaches
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zero, the relative error in B+ approaches zero, which further implies
that B+ approaches A+. Remembering, on the other hand, that if
rank (B) # rank (A) then R(A) and R(B) cannot be acute, we have from

Theorem 3.1 the following corollary of Theorem 3.4.

Corollary 3.5. A necessary and sufficient condition that

Yim B » A

B-A

is that rank (B) = rank (A) as B approaches A.

Acute Perturbations. It is evident from the proofs of Theorems 3.3

and 3.4 that we have given away much in deriving the bounds. In particular,
if B is a small acute perturbation of A then Py and Pp are nearly
equal, and the same is true of RA and RB' Thus it follows from (3.4)
that B+ - A+ can be decomposed into three terms--one essentially depending
on P,ER,, one on PAERR’ and one on PRER;. However, this does not tell the
whole story; for we shall show that the dependency of B+ - A+ on PAER:
and PXERA is bounded, no matter how large these projections may be.

In order to state our theorems concisely, we must first introduce some
kxr

additional notation. Let |l*/l be generated by ¢ and for any F € C

(k 2 r) define

(3.10) ¥ (F Ui e
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The function Ww is not a norm; however, it has some useful properties.

First, from (2.5) and the monotonicity of ¢,

¥(GF) = ¥(IGI,F) = ¥(IGIF) .

Second, since for a =1

ao aoc

(1+a02)1/2 & (1*02)

1/2

we have

a2 1=y ww(aF) < aww(F) :

For small F, ww(F) is asymptotic to |/F|:

Vo (F) = [[Ell + o(l[Fll) .
For large F, ww is bounded:
Vo(F) = LIl .
Finally, for the spectral norm
HFUZ
iy (1+[IFHZ§)D2 '

Our first result concerns a rather special matrix.

Lemma 3.6. The matrix




=36 =~

satisfies
¥yt
(3.11) ( )' <1
F/ 1
and
¥
(3.12) ( ) - (@ 0f =v,F) .
F

Proof. It is easily verified that

-t-
I
(3.13) ( > « (R g B,

F

whose singular values are

%1,
(1vo2 (B))

from which (3.11) follows. Also if

then
oe1- qaeFR)L,
It follows that the singular values of G are given by
o; (F)
o, 177

which establishes (3.12). o




.

The main result is based on an explicit representation of Bf. We

shall work with the reduced forms of A and B.

Theorem 3.7. Let B be an acute perturbation of A. Then

-!-
I
+ $.-1
(3.14) B' = @ F'm] :
Fa

where
21 " ExnBy o Fip=B

Proof. As in the proof of Theorem 3.4, we have

o {()
(2

can be expressed as a linear combination of the columns of

Enl/-

: -1
Since Bll(BllEIZ) EIZ' we must have

Ep2 B}
- B E ’
. - 11512
22 21

from which it follows that

Thus the columns of




e

ik T

I

4 =3

(3.15) B = >Bn(_r Fly) -
Fn

The result now follows from Penrose's conditions. o

It is interesting to observe that, from (3.15),

' o P n i
8327 %0 " PyPysPyg +
which is of second order in [Ell. In other words, if rank (As
then PAERR must approach zero quadratically as | approache
We turn now to the perturbation theorem.
Theorem 3.8. Let B be an acute perturbation of A. let
de
K = I:A['.“A !:‘)
and let
IE,, |l
y=1-x—41 >0
Then
. _ JAT]
and
o S PE. . f ) 2 | )
| iB"-A") .« En PR ,(5 12
(3.16) ?‘A+H Yy TR * ‘V.,p(y “r ) i \"2 ¥y TR

where Ww is defined by (3.10).

Proof. Let Fij be defined as in Theorem 3.7. Let




¥

I

= r =

I (F ) Jig = Uy Fppd .
21

It follows from Theorem 2.2 that

-1
IASTI gt
-1, . "l A
1Bl = Ay By 7 h < —L L JATL

7. R
From (3.14), B JlZBll JZl’ and from Lemma 3.6

1.
TR SRt [ USRI T, e |
1B = 1330 IB g, 0, = iBppn < JAL

Now from (3.14)

Pt ot =Bt o gty -1t Bt Mg ¥
(3.17) B-A = My 12)A11 21 * 1210217 Top) * I (Byp-A) g -

From Theorem 2.2 we have the following bound:

o IE 1
L3.18) ”le(Bll All)” - ”All 2 Y W
By Lemma 3.6
(3.19) 1@t -rt At o< Ay ot -t
' 12° 12 1121-A112 127112

i 1
14710 2% (B 1E4 )

IE,
12
= 1Al % & i
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and likewise

I
1
(3.20) 9] A @5y To) = TATTH¥, € TT

The bound (3.16) follows on combining (3.17), (3.18), (3.19), and (3.20)

and remembering that A7/l = A"l o

The bound (3.16) gives a rather nice dissection of %B+-A'r. Asympto-
tically, for E small, it reduces to the bound that would be obtained by

taking norms in (3.4); i.e.,

'lA Y IIV

However, the bound additionally shows that EIZ and FZI can have at most
a bounded effect on (B -A'[|.

When A is square and nonsingular, El2 and E21 are void, and the
bound reduces to that of Theorem 2.2. Note that the number «, defined

in analogy with (2.17), plays an analogous role here.

Asymptotic forms and derivatives. Asymptotic forms for B may be

obtained from either (3.4) or (3.14). Of course for B+ to approach A+
we must have rank (A) = rank (B); and since we are assuming that E is
arbitrarily small, by Theorem 2.5 we have that B is an acute perturbation

of A. In this case

B = A" +o(IED) ,

and
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t t
Pp = BB = (A+E)[A +O0(([E[)] = P, + OCIEI)

with similar expressions for the other projections. Hence from (3.4)

b £t
B' = AT - ATp ER,AT + (aTn) TR, VP2
(3.21)

- REP, (thT v oiEl? |

It follows immediately from (3.21) that if A(x) is a differentiable

function of =t with
rank [A(t)] = rank [A(T')]

forall =, then A-(o)° is & differentiable Bmction of ¢ and
TSI I S0 AR al
at Adt A A dT A

(3.22)
H

L dA H.+
"Ry I PA(AA) .

The asymptotic form obtained from (3.14) can be useful computationally
<4
vhen A has been put in reduced form as a preliminary to computing A .
We have from (3.21) that

i ey e o 2
11 = A1 7 AnEppAng ¢ OUIE, D) .

From (3.13) in the proof of Lemma 3.6 we have

B

+
I

| @ ARER)  OUEHE, )
21




e
and
@ r =T + O(liEy , IIE 1)
12 E?ZAiT 11 12

Hence from (3.14)

Al ale Al ogE ”

11~ At EH1+ OClIEy; E; 1)

12
11 11) 2

H!

+ O(llE, I HEIZHHEZIH)

G.23) Be|E

12(AHA*I‘I) L+ o(lEIIE,ID B, !

) =
ll 11 11

This expression is in perfect agreement with (3.21) when the Hij are

interpreted appropriately as projections of E.

Notes and references. For expository reasons the results of this

section have not been presented in the historical order of their development.
Penrose (1955) established Corollary 3.4 using techniques that do not give
explicit perturbation bounds. The subject was revived by Golub and Wilkin-
son (1966), whose interest in stable algorithms for solving least squares
problems [cf. Golub (1965)] led them to derive first-order perturbation
bounds for least squares solutions (more of this later). The first pertur-
bation bounds for the pseudo-inverse itself are given by Ben-Israel (1966),
who restricts his class of perturbations so that (in reduced form ) only

E is nonzero. More general theorems for acute perturbations were estab-

11
lished by Hanson and Lawson (1959), Pereyra (1969), and Stewart (1969).

Theorem 3.7 is a refinement and extension of Stewart's bound.
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The decompositions (3.3) and (3.4) and the consequent Theorem 3.4
are due to Wedin (1973). Theorem 3.3 is a slight extension of these
results. Theorem 3.1 is also due to Wedin (1973), although a slightly
restricted form of the result may be found in Stewart (1969). In an
earlier report Wedin (1969) considers the sharpness of the constants pu
in Theorem 3.4 and shows that for the spectral norm u cannot be made
smaller.

Early differentiability results have been given by Pavel-Parvu and
Korganoff (1969) and Hearon and Evans (1968). Wedin (1969) derived the
formula (3.22) as we did from the decomposition (3.4). The same result
for functions of several variables was derived independently by Golub
and Pereyra (1973) in connection with separable nonlinear least squares

problems. For further references see Golub and Pereyra (1975).

4. Projections

In this section we shall consider how the projection P, varies with
A. Since PA - AAT, it might be thought that the perturbation theory for
PA could be derived from the theory developed in the last section
for Af. However this approach gives too much away, and sharper bounds
may be obtained by working directly with one of the decompositions of B .
In particular we shall work with the decomposition (3.15) based on the
reduced forms of A and B.

If R(A) and R(B) are not acute, then HPB-PAHZ = 1. Consequently

we can restrict ourselves to the case where R(A) and R(B) are acute.
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More particularly we shall only consider the case where B is an acute

perturbation of A.

Theorem 4.1. Let B be an acute perturbation of A, and let «

and y be defined as in Theorem 3.8. Then

IEy, I,

T Il
* *(5 VEZlﬂz)z 1/2
YAl

Proof. With F21 defined as in the last section we have [cf. (3.19)]

I
m)an( )

Fo
D)t
W L 21) 21)

21

is a Hermitian idempotent whose column space is R(B); hence it is P

A

(4.1) HPB-PAII2 <

The matrix

B
It follows that

1 1 H
(I’Fll 21) (I’Fg1F21) F21

4.2) Py - Py =
o bk g o
Fyr (IsF5 Fy)) Fpy (14F 3 F ) '

from which it is easily verified that




- AR

o4
. F}2{1*: 21(1+H;1F 21 0
(4.3) @y’ = :
0 F1 (I*F}zilpzﬂ Fgl

Now the nonzero singular values of the diagonal blocks in (4.3) are given by

oF (F5y)

1+ d;(Fy)

where the oi(FZI) are the nonzero singular values of F21' The result

follows from the fact that the largest singular value o of FZl satisfies

lE,4 I
. I Yur 2

9 Fx) = Fuly =y a1, - °
In terms of projections, the bound (4.1) can be written in the form

4
: 2

: /2
& (5 IPAER, I, )2
Y TAT,

The bound is interesting in several ways. First it depends not at all on

<=

IPg-Pyll, <

E12 and EZZ' Second its dependence on E11 is only through the constant
v (in fact the term «k/y can be replaced throughout by HBiiHZHAHZ). Third
the bound is always less than unity. Finally, it goes to zero along with

EZl' We may summarize this last observation in the following corollary.

Corollary 4.2. Regarding B as variable, a sufficient condition for

lim Py = P
B ° A
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is that rank (A) = rank (B), nA*uzuPAsRAuz <8<1, and

lim P*BR, = 0 .
BA A A

Asymptotic forms and derivatives. Asymptotic forms may be obtained

in the usual way from (4.2). Indeed
2 3
OUE, %) Fo + O(IE, )

Fpy + OCIE, 1Y) OCIE,!)

In terms of projections

= 1 + ) 1 1 2
Py = Py + PAERA' + A HRAEHPA + O(IPAER, %)

It follows that if A(t) is differentiable and varies without changing rank,

then PA(T) is differentiable and

dp H
A . dA t +HR dA
i FoHREN DT

Notes and references. Theorem 4.1 and its corollary appear to be new.

The expression (4.4) for the derivative of PA was first given by Golub and

Pereyra (1973).

5. The Linear Least Squares Problem

In this section we shall derive perturbation bounds for the least
squares problem of minimizing Hb-Atz. Although the solution of minimum
norm is given by x = ATb, the perturbation theory of §3 again does not give

the best possible results.




=

We shall assume throughout this section that B is an acute pertur-
bation of A, and we shall work with the reduced form of the problem.
In this form x is replaced by VHx and b is replaced by UHb (cf. 32).

If x and b are partitioned in the forms

() ()

2 2
where xl,b1 € €' then
(5.1) x, = A lp
3 1 1171
and
x2 =0.

Moreover the norm of the residual vector
T=Db - Ax
is given by
el = ”bZHZ‘

In the theorems to follow we shall freely use the definitions made
in the previous sections [e.g., x and y]. One additional piece of nota-
tion will be needed; namely, we shall define rn as that nonnegative constant

such that

byl = nllAll,lIxI, -
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Since b1 = A, .X,, we have n = 1. Also ||x]| = HATHHblH, which shows that

11
- +

n=>«L When A is ill-conditioned, that is when A  is large, the

vector x may be either large or small. In the first case =n is near

zero, and we shall say that "x reflects the ill-condition of A."

We first consider perturbations in the vector b.

Theorem 5.1. Let x = A'b and x + h ~ Al (b+tk). Then
| |
s Iy . %;Aknz
T, P

Proof. With the obvious partitioning of k we have h = A11

5-3’ | i I

But [[x|l, = n Yl I/ IAll,, which combined with (5.3) yields (5.2). o

12
Theorem 5.1 shows that the perturbation in x 1is determined by the
projection of k onto R(A). However, PAk is normalized by ”PAbN,,

and if this latter quantity is small, the perturbation may be large. Since

2

2_ 2 {1
bl = (IPybIS + firll5

this observation may be summarized by saying that large residuals
are troublesome, a statement which will be amply supported later.

Since m can be as small as 3

, the number « cannot be taken

as a condition number for perturbations in b without further qualification.
If x does not reflect the ill-conditioning of A, then 7 is near unity
and k is a condition number. Otherwise the solution will be relatively

insensitive to perturbations in b.
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We next turn to assessing the effects on x of a perturbation in A. |

Theorem 5.2. Let x = Afb and x + h = BTb, where B = A + E is an

acute perturbation of A. Then

o Ihll, _ 5_”511”2 A ( HE12H2 2 HE21H2 gbzuz IE,, Il
' T, = ¥ “TAT, vy AT, 22 TAT; m T, A”z

Proof. Write

X + 2 g
(5.3}  _h le(B11 11)b (Jyp 12)A11 1 * 12811 U217 Ip00

Then
(5.6) ot 1 )b I, = x "l Il
: 12B1A by = 5 AT, Wz
and
IlE, .l
+ 122
1) U1 Ay 2 = (5 TTZ’) b
Now
0 W M 1 N J [(I+FH ya
12811V217 1 2By [(I+F F ) b
(5.8)
-1
12 11(I*F21F21 Fglbz
To bound the first term in (5.8), note that (I+F!1 21) = -(I+FH FZl)lrgl
Hence
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¥ i :
”leBll[(I*FglF21) I1b, 1,

1 =3
1By 11l (1+F5 1 F 1) "L, I, 15 by 1

IA

(5.9)
=12

=l
1 I5IE

2111212181161 115
lE,4 1l 12
sfdio amt F Balaaz
18,2 021E W Zixl, < [Y'-WKW;.] Ix

IIB

1A

1A

For the second term in (5.8) we have

W s e
IJ 511(I*F21F21) Fa1ball5

-1,2
183311 1E 5 1B,

1A

o Ibsl, i)
'12 ] i I X

= IB; 12, I, "P2'2 2

112" 28 2 ™ n TAT,

12 2

(Bl oy
o ( Y ) AT, ™1 2 -

The bound (5.4) follows on combining (5.5)-(5.10). o

The first two terms in (5.4) are unexceptionable. The first term
corresponds to the classical result for linear systems and is the only
nonzero term when A 1is square and nonsingular. The second term depends
on PAERR and vanishes when A is of full column rank, as it is in many
applications.

The third term requires more explanation. If terms of second order

in HEZIH are ignored, this expression becomes essentially

& Mbally R, 2 IE,, I,

(5.11) :2- n ”51”2 ”Aﬂz l?ﬂtane—mr;— ’




~ W

where 6 1is the angle subtended by b and R(A). The number Kzn tan G/YZ
can vary from 0 to =, It is small when 6 is small (i.e. the residual
vector is small). It is also reduced in size when x reflects the ill-

4 hen x does not veflect the ill-

conditioning of A so that n & «
conditioning of A and 6 is significant, it is of order KZ, thus making
the third term in (5.4) the dominant one.

We have bounded the third term in the decomposition (5.5) in such a
way as to reflect its behavior when E21 is small. In fact it is bounded

for all values of EZI’ and the third term in (5.4) may be replaced by

w, Moy (o JEnl,
N U R SR L PR

The residual. Since the residual vector is given by r = PAb, the theory

of 54 may be applied to give perturbation bounds for the residual. Specifi-

cally, if
=38
and
f'=b-B§E=PBb,
then

and IIPB-PAII2 can be bounded by (4.1) in Theorem 4.1.
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In applications one may not be interested in r; rather one is

interested in the residual r of X with respect to the matrix A:
r=>b-Ax.
If we write
T-r= (PprPIb- EX,
then
el < IPgPyl bl + IEN, I, -

Theorem 5.1 provides the necessary estimate of X.
If we concern ourselves with only the change in ”er we can derive
a slightly stronger result. Since r is the minimizing residual, we have

hr”z < HfHZ. Likewise Hb-(A*E)iHZ < Hb-(A#E)xHZ, from which it follows that
el = lizll, < lell, + HEN, (lxl #01x1,) .

Asymptotic forms and derivatives. An asymptotic form for the perturbed

least squares solution X can be obtained from (3.4):

A’ 1' o 4 HT
X=x-A PAERAx RAEHPACA )

(5.12) i

+ ()R, EP + 0(IEI?)
An equivalent asymptotic formula, which may be useful in computational work,
can be derived from the reduced form (3.23). The derivative formula corre-

sponsing to (5.12) is
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dA . aall +

H
L » H,t H dA

Sl&

An inverse perturbation theorem. Theorem 5.1 shows how a perturba-

tion in A can affect the least squares solution. Here we consider the

)

question: given a vector x under what conditions is X the least
squares solution of a slightly perturbed problem? One such condition is

given in the following theorem.

Theorem 5.2. Let X ¢ € be given. Let x = A+b, r =b - Ax, and

Feab'- AR If
a2
102 = Irld + 2,

then there is a matrix E of rank unity with

(5.13) IEl, = ——
2R,
such that Hb-(A+E)§H2 is a minimum.
Proof. Let
e=T-r= (x-X) € R(A) .
Since r € R(A)*,
002 = eid « pend

which shows that He"z- e. Let
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e&?{
Em - vy M
%115

Then E satisfies (5.13) and R(E) ¢ R(A). Hence R(A+E) ¢ R(A). But
b - (ME)X =1 € R(A)*

which shows that the residual b - (A+E)X € R(A+E)*, and X solves the

required least squares problem. o

A consequence of this theorem is that there is little use hunting for
the exact minimizing x. Provided the residual is nearly minimal, the
approximate solution X, however inaccurate, is the exact solution of a
slightly perturbed problem.

It is sometimes desirable that the perturbation matrix E in Theorem
5.2 not alter same of the columns of A (e.g. a column may be dates in
years). This can be done as follows. Let X be the vector obtained from
X by setting to zero the compenents corresponding to the columns that are

not to be disturbed. Then

is the required matrix. Of course Hi”z < Hxll2 so that HEHZ > HEHZ; however

HEHZ may still be small enough for practical purposes.

Notes and references. Much of the perturbation theory for pseudo-

inverses has been a byproduct of the search for bounds for the linear least

squares problem. Golub and Wilkinson (1966) gave a first order analysis




< A& 3

of the problem and were the first to note the dependence of the solution

on xz. Rigorous upper bounds were derived by Hanson and Lawson (1969),
Pereyra (1969), and Stewart (1969). Wedin (1969) also gives bounds. More
recent treatments have been given by Lawson and Hanson (1974) and Abdelmalek
(1974). Van der Sluis (1975) was the first to point out the mitigating
effect of n in (5.11).

The inverse perturbation theorem is new.

e B e e - . — e —
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